Fairness, Computable Fairness, and Randomness
نویسنده
چکیده
منابع مشابه
On fairness and randomness
We investigate the relation between the behavior of non-deterministic systems under fairness constraints, and the behavior of probabilistic systems. To this end, first a framework based on computable stopping strategies is developed that provides a common foundation for describing both fair and probabilistic behavior. On the basis of stopping strategies it is then shown that fair behavior corre...
متن کاملImproving Tor security against timing and traffic analysis attacks with fair randomization
The Tor network is probably one of the most popular online anonymity systems in the world. It has been built based on the volunteer relays from all around the world. It has a strong scientific basis which is structured very well to work in low latency mode that makes it suitable for tasks such as web browsing. Despite the advantages, the low latency also makes Tor insecure against timing and tr...
متن کاملA Decentralized Online Sortition Protocol
We propose a new online sortition protocol which is decentralized. We argue that our protocol has safety, fairness, randomness, non-reputation and openness properties. Sortition is a process that makes random decision and it is used in competitions and lotteries to determine who is the winner. In the real world, sortition is simply done using a lottery machine and all the participa...
متن کاملCross-layer Packet-dependant OFDM Scheduling Based on Proportional Fairness
This paper assumes each user has more than one queue, derives a new packet-dependant proportional fairness power allocation pattern based on the sum of weight capacity and the packet’s priority in users’ queues, and proposes 4 new cross-layer packet-dependant OFDM scheduling schemes based on proportional fairness for heterogeneous classes of traffic. Scenario 1, scenario 2 and scenario 3 lead r...
متن کاملOn Fairness, Diversity and Randomness in Algorithmic Decision Making
Consider a binary decision making process where a single machine learning classifier replaces a multitude of humans. We raise questions about the resulting loss of diversity in the decision making process. We study the potential benefits of using random classifier ensembles instead of a single classifier in the context of fairness-aware learning and demonstrate various attractive properties: (i...
متن کامل